OHIO UNIVERSITY

School of Electrical Engineering & Computer Science

Performance of IEEE 802.16 OFDMA Standard Systems in Airport Surface Area Channels

1-3 May 2007

Indranil Sen, Beibei Wang, David W. Matolak

School of Electrical Engineering & Computer Science
Ohio University
Athens, OH 45701

Outline

- Introduction/background
 - Importance of performance evaluation for airport surface channels
 - Growing significance of 802.16
- Channels
 - Description of channels considered
 - Comparison highlights of stationary and non-stationary channel models for different airports
- 802.16e system description
- Numerical results for 802.16e performance
 - BER for different channel estimation schemes
 - Throughput using "aggressive scheduling"
- Summary & future work

Airport Surface Channels

Motivation

- Civilian aviation anticipates both a near and longterm need for new communications capabilities
- MLS extension band, 5.091-5.15 GHz, primary candidate for deploying new communication system for airport surface
- ACAST Channel Characterization project
 - Measurement campaigns at several airports (CLE, MIA, JFK, Tamiami, Burke Lake, and OU), 2005-06
 - Stochastic channel models developed to emulate the physical propagation environment
 - Channel models useful to simulate different system performance under realistic conditions

Ohio University

802.16e Features

- Designed for NLOS applications
- OFDMA-based, with scalable channel bandwidth
- High throughput
 - -Up to 100 Mbps for 20 MHz channel bandwidth
- Large coverage area
 - -Up to 50 km for stationary case (directional antennas)
- Quality of service (QoS) support
 - -Different service levels
 - -Grant/request based MAC
- Mobility support

Airport Environment Description

- Airport surface area classification
 - LOS-O: Open areas, e.g., runways, some taxiways
 - NLOS-S: mostly NLOS w/dominant Specular component plus low energy multipath components, e.g., near terminals
 - NLOS: obstructed LOS, largest DS, e.g., near gates
- Aircraft inhabit all three regions—non-stationary
 channel, in contrast to most terrestrial models
- · We focus on "worst case" models
 - Large Airport NLOS model
 - Medium Airport NLOS model
 - Small Airport NLOS-S model

Tapped Delay Line Channel Model

Tapped delay line structure

$$h_k(t) = z_k(t)\alpha_k(t)e^{j\phi_k(t)}$$
- Weibull pdf for $\alpha_k(t)$: $p_w(r) = \frac{\beta}{a^{\beta}}r^{\beta-1}exp\left[-\left(\frac{r}{a}\right)^{\beta}\right]$

 β : shape factor; determines fading severity

a: scale factor =
$$\sqrt{E(r^2)/\Gamma([2/\beta]+1)}$$

 $-z_k(t)$ is a 2-state, first-order Markov model

Criteria for Channel Models

- Number of taps (*L*)
 - Criterion 1: Mean RMS delay spreads $L = \lceil E[\sigma_{\tau}] / T_c \rceil$
 - Criterion 2: Maximum duration of the CIR
- Aggregate energy
 - Criterion 1: For NLOS, 95% aggregate energy
 - Criterion 2: All the taps, i.e., 100% aggregate energy
- Non-Stationary/Stationary
 - Criterion 1: Persistence process and correlation among taps
 - Criterion 2: No Persistence process, uncorrelated taps

Different Channel Models

- Model -1 (M1)
 - Number of taps: Mean RMS-DS
 - Aggregate Energy: 95%
 - Non-Stationary channel model
- Model -2 (M2)
 - Number of taps: *Maximum duration* of CIR
 - Aggregate Energy: 100%
 - Non-Stationary channel model
- Model -3 (M3)
 - Number of taps: *Maximum duration* of CIR
 - Aggregate Energy: 100%
 - Stationary channel model

Example Model [M1, Large Airport, 10]

Tap Index k	Energy	β_k	$P_{1,k}$	P _{00,k}	P _{11,k}
1	0.6350	2.10	1.0000	NA	1.0000
2	0.0641	1.58	0.8794	0.1975	0.8899
3	0.0363	1.56	0.7890	0.3258	0.8197
4	0.0323	1.61	0.7747	0.3301	0.8051
5	0.0285	1.63	0.7519	0.3363	0.7809
6	0.0278	1.57	0.7437	0.3599	0.7794
7	0.0265	1.60	0.7288	0.3789	0.7690
8	0.0236	1.67	0.7102	0.4013	0.7556
9	0.0226	1.66	0.7060	0.4063	0.7529
10	0.0207	2.0	0.6930	0.4324	0.7488
11	0.0223	1.65	0.7065	0.4052	0.7528
12	0.0219	1.66	0.7000	0.3868	0.7374
13	0.0192	2.0	0.6798	0.4453	0.7386
14	0.0194	2.0	0.6992	0.4067 Ohio Un	0.7449 versity

- Tap amplitudes specified by energy, β
- Persistence parameters specified by Markov probabilities

$$TS_{k} = \begin{bmatrix} P_{00} & P_{01} \\ P_{10} & P_{11} \end{bmatrix}$$

$$SS_k = \begin{bmatrix} P_0 \\ P_I \end{bmatrix}$$

 $P_{i,j}$ =probability of transition from state i to state j

Comparing Models with Data

Comparison of RMS-DS statistics for Model-2, Model-3 w/those of data for [Large Airport, 10 MHz, NLOS]

Comparing Models with Data (2)

 Comparison of Delay Window statistics for Model-2, Model-3 w/those of data for [Large Airport, 10 MHz, NLOS]

Comparing Models with Data (3)

- "Distance" measures to compare pdfs of models and data
 - Measured data denoted D, simulated model denoted S
 - Kullback-Leibler (KL) & Histogram Intersection (HI)

$$KL = \sum_{i=1}^{M} D_i \log_2 \left(\frac{D_i}{S_i} \right)$$
; $KL = 0$ is perfect match

$$HI = \sum_{i=1}^{M} min(D_i, S_i);$$
 HI = 1 is perfect match

Large Airport-NLOS				Medium Airport- NLOS			Small Airport- NLOS-S					
	$\sigma_{_{ au}}$		$W_{ au,90}$		$\sigma_{_{ au}}$		$W_{ au,90}$		$\sigma_{_{ au}}$		$W_{ au,90}$	
	KL	HI	KL	HI	KL	HI	KL	HI	KL	HI	KL	HI
Model-2	0.15	0.85	0.052	0.92	0.24	0.78	0.27	0.80	0.55	0.79	0.65	0.63
Model-3	0.41	0.74	0.21	0.82	0.36	0.73	0.31	0.76	1.24	0.55	1.14	0.55

Communication System Description

802.16e system structure (from SS to BS)

BS

Communication System Description (2)

- 802.16 defined subcarrier allocation algorithms
- Distributed permutation (PUSC/FUSC), mandatory
- AMC permutation, optional

Uplink PUSC tile structure

Each subchannel in uplink PUSC has six distributed tiles, determined by the permutation defined in 802.16

Channel Estimation Techniques

- As with many wireless standards, 802.16 does not specify receiver processing
- One key algorithm is channel estimation (CE)
 - − CE 1: average pilot symbols in both T & F domains
 - CE 2: average pilot symbols in T domain, and linearly interpolate in F domain
 - CE 3: linearly interpolate the pilot symbols in both T
 & F domains

OFDMA System Parameters

Channel Bandwidth (MHz)	8.75
FFT size N	512
Useful OFDMA Symbol Period T_b (µs)	51.2
CP Duration (µs)	1.6
OFDMA Symbol Period T_s (μ s)	52.8
Maximum Channel Delay Spread T_M (µs)	1.4
Number of Channel Taps	14
Doppler Frequency f_D (Hz)	120
Number of Users	5

BER Performance

• BER vs. E_b/N_0 , large airport NLOS M2 channel, different estimation techniques, K=5 users

• P_b = 3×10⁻³ at 21 dB wifth^{10⁻³} perfect channel estimation highlights degradation due^{10⁻⁴} to the severe frequency selectivity of the large airport channel

BER Performance

- BER vs. E_b/N_0 for all airports using model M1 and best estimation techniques, K=5 users
- $N = 512, f_{D.max} = 300 \text{ Hz}$
- Performance best for Small Airport NLOS-S
- Performance worst for Large Airport NLOS
- BER performance for Small Airport NLOS-S with perfect channel estimation acts as a lower bound

Ohio University

BER Performance

- BER vs. E_b/N_0 for all airports using model M2 and best estimation techniques, K=5 users
- $N = 512, f_{D.max} = 300 \text{ Hz}$
- Performance best for Small Airport NLOS-S
- Performance worst for Large Airport NLOS
- BER performance for Small Airport NLOS-S with perfect channel estimation acts as a lower bound

Ohio University

OFDMA Scheduling Parameters

Parameters for Two Service Classes

	GP User	BE User
Required BER	10-2	10-2
Required Date Rate R_b (Mbps)	2	Not Guaranteed
Number of Users	First 50%	Last 50%

- QoS defined by (uncoded) error probability $\leq 10^{-2}$
- User classes
 - Guaranteed performance (GP)
 - "Best effort" (BE)
- For GP users, BER takes priority over data rate
 - -Data rate limited if BER requirement can not be met

"Aggressive" Scheduling Algorithm

For each GP user:

- a) Find the best available subcarrier
- b) Determine modulation scheme $m_{k,n} = \lfloor log_2(1+\gamma_{k,n}/\Gamma) \rfloor$; if no modulation scheme can satisfy BER requirement, scheduling considered done for this user
- c) Repeat a), b) until the date requirement is satisfied

For each BE user:

- d) Find best available subcarrier for the user with lowest data rate, and determine the corresponding modulation scheme
- e) Repeat d) until all data subcarriers are used or BER requirements can not be satisfied $(\Gamma = -ln(5BER)/1.5)$

Throughput Results

• Throughput using M2 models, all airports, perfect CE

Summary

- Presented "worst case" channel models for different airport sizes
 - Multiple models presented for each airport
 - Compared stationary and non-stationary model implementations
- Simulated BER performance of 802.16e using "worst case" channel models
 - Analyzed performance of different channel estimation techniques for these channel models
- Simulated throughput performance of 802.16e using "worst case" channel models of different airports using an "aggressive" scheduling algorithm

Future Work

- Complete BER and throughput performance evaluations for channel models of other regions, e.g., NLOS-S and LOS-O
- Evaluate performance enhancement techniques, e.g., diversity antennas
- Implement initial WiMax wireless network "test-bed" to measure performance